Estrogen replacement enhances EDHF-mediated vasodilation of mesenteric and uterine resistance arteries: role of endothelial cell Ca2+.

نویسندگان

  • Natalie Z Burger
  • Olga Y Kuzina
  • George Osol
  • Natalia I Gokina
چکیده

Endothelium-derived hyperpolarizing factor (EDHF) plays an important role in the regulation of vascular microcirculatory tone. This study explores the role of estrogen in controlling EDHF-mediated vasodilation of uterine resistance arteries of the rat and also analyzes the contribution of endothelial cell (EC) Ca(2+) signaling to this process. A parallel study was also performed with mesenteric arteries to provide comparison with a nonreproductive vasculature. Mature female rats underwent ovariectomy, with one half receiving 17beta-estradiol replacement (OVX+E) and the other half serving as estrogen-deficient controls (OVX). Uterine or mesenteric resistance arteries were harvested, cannulated, and pressurized. Nitric oxide and prostacyclin production were inhibited with 200 microM N(G)-nitro-l-arginine and 10 microM indomethacin, respectively. ACh effectively dilated the arteries preconstricted with phenylephrine but failed to induce dilation of vessels preconstricted with high-K(+) solution. ACh EC(50) values were decreased by estrogen replacement by five- and twofold in uterine and mesenteric arteries, respectively. As evidenced by fura-2-based measurements of EC cytoplasmic Ca(2+) concentration ([Ca(2+)](i)), estrogen replacement was associated with increased basal and ACh-stimulated EC [Ca(2+)](i) rise in uterine, but not mesenteric, vessels. These data demonstrate that EDHF contributes to endothelium-dependent vasodilation of uterine and mesenteric resistance arteries and that estrogen controls EDHF-related mechanism(s) more efficiently in reproductive vs. nonreproductive vessels. Enhanced endothelial Ca(2+) signaling may be an important underlying mechanism in estrogenic modulation of EDHF-mediated vasodilation in small resistance uterine arteries.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Estrogen replacement enhances EDHF-mediated vasodilation of mesenteric and uterine resistance arteries: role of endothelial cell Ca

Burger NZ, Kuzina OY, Osol G, Gokina NI. Estrogen replacement enhances EDHF-mediated vasodilation of mesenteric and uterine resistance arteries: role of endothelial cell Ca . Am J Physiol Endocrinol Metab 296: E503–E512, 2009. First published January 6, 2009; doi:10.1152/ajpendo.90517.2008.—Endothelium-derived hyperpolarizing factor (EDHF) plays an important role in the regulation of vascular m...

متن کامل

Augmented EDHF signaling in rat uteroplacental vasculature during late pregnancy.

A successful pregnancy outcome relies on extensive maternal cardiovascular adaptation, including enhanced uteroplacental vasodilator mechanisms. The objective of the present study was to determine the contribution of the endothelium-derived hyperpolarizing factor (EDHF) signaling in pregnancy-enhanced uterine vasodilation, to define the role of Ca(2+)-activated K(+) channels in mediating EDHF e...

متن کامل

Upregulation of endothelial cell Ca2+ signaling contributes to pregnancy-enhanced vasodilation of rat uteroplacental arteries.

Normal pregnancy is characterized by an increased uterine blood flow due to growth and remodeling of the maternal uterine vasculature and enhanced vasodilation of the uterine arteries. The objective of the present study was to examine the role of endothelial cell Ca2+ signaling in augmented endothelium-mediated vasodilation of uteroplacental arteries in late pregnancy. We performed fura-2-based...

متن کامل

Gonadectomy prevents endothelial dysfunction in fructose-fed male rats, a factor contributing to the development of hypertension.

Insulin resistance has been shown to be associated with increased blood pressure (BP). The sex hormones estrogen and testosterone have opposing effects in the development of increased BP. Since testosterone has been implicated in increased BP following insulin resistance, we have tried to dissect out the effects of insulin resistance on endothelium-dependent vasorelaxation in the presence and a...

متن کامل

Role of caveolar compartmentation in endothelium-derived hyperpolarizing factor-mediated relaxation: Ca2+ signals and gap junction function are regulated by caveolin in endothelial cells.

BACKGROUND In endothelial cells, caveolin-1, the structural protein of caveolae, acts as a scaffolding protein to cluster lipids and signaling molecules within caveolae and, in some instances, regulates the activity of proteins targeted to caveolae. Specifically, different putative mediators of the endothelium-derived hyperpolarizing factor (EDHF)-mediated relaxation are located in caveolae and...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • American journal of physiology. Endocrinology and metabolism

دوره 296 3  شماره 

صفحات  -

تاریخ انتشار 2009